Rust language cheatcode
Basic Types & Variables
-
Boolean
bool
-
Unsigned integers
u8, u16, u32, u64, u128
-
Signed integers
i8, i16, i32, i64, i128
-
Floating point numbers
f32, f64
-
Platform specific integers
-
usize
- Unsigned integer. Same number of bits as the platform's pointer type. -
isize
- Signed integer. Same number of bits as the platform's pointer type. -
char
- Unicode scalar value -
&str
- String slice -
String
- Owned string -
Tuple
let coordinates = (82, 64);
let score = ("Team A", 12)
- Array & Slice
// Arrays must have a known length and all elements must be initialized
let array = [1, 2, 3, 4, 5];
let array2 = [0; 3]; // [0, 0, 0]
// Unlike arrays the length of a slice is determined at runtime
let slice = &array[1 .. 3];
- HashMap
use std::collections::HashMap;
let mut subs = HashMap::new();
subs.insert(String::from("LGR"), 100000);
// Insert key if it doesn't have a value
subs.entry("Golang Dojo".to_owned()) .or_insert(3);
- Struct
// Definition
struct User {
username: String,
active: bool,
}
// Instantiation
let user1 = User {
username: String::from("bogdan"),
active: true,
};
// Tuple struct
struct Color(i32, i32, i32);
let black = Color(0, 0, 0);
- Enum
// Definition
enum Command {
Quit,
Move { x: i32, y: i32 },
Speak(String),
ChangeBGColor(i32, i32, i32),
}
// Instantiation
let msg1 = Command::Quit;
let msg2 = Command::Move{ x: 1, y: 2 };
let msg3 = Command::Speak("Hi".to_owned());
let msg4 = Command::ChangeBGColor(0, 0, 0);
- Constant
const MAX_POINTS: u32 = 100_000;
- Static variable
// Unlike constants static variables are
// stored in a dedicated memory location
// and can be mutated.
static MAJOR_VERSION: u32 = 1;
static mut COUNTER: u32 = 0;
- Mutability
let mut x = 5;
x = 6;
- Shadowing
let x = 5;
let x = x * 2;
- Type alias
// `NanoSecond` is a new name for `u64`.
type NanoSecond = u64;
Control Flow
let num = Some(22);
if num.is_some() {
println!("number is: {}", num.unwrap());
}
// match pattern and assign variable
if let Some(i) = num { println!("number is: {}", i);
}
let mut count = 0;
loop {
count += 1;
if count == 5 {
break; // Exit loop }
}
'outer: loop {
'inner: loop {
// This breaks the inner loop
break;
// This breaks the outer loop
break 'outer;
}
}
let mut counter = 0;
let result = loop {
counter += 1;
if counter == 10 {
break counter;
}
};
while n < 101 {
n += 1;
}
let mut optional = Some(0);
while let Some(i) = optional {
print!("{}", i);
}
for n in 1..101 {
println!("{}", n);
}
let names = vec!["Bogdan", "Wallace"];
for name in names.iter() {
println!("{}", name);
}
let optional = Some(0);
match optional {
Some(i) => println!("{}", i),
None => println!("No value.")
}
References, Ownership, and Borrowing
Ownership rules
- Each value in Rust has a variable that’s called its owner.
- There can only be one owner at a time.
- When the owner goes out of scope, the value will be dropped.
Borrowing rules
- At any given time, you can have either one mutable reference or any number of immutable references.
- References must always be valid.
Creating references
let s1 = String::from("hello world!");
let s1_ref = &s1; // immutable reference
let mut s2 = String::from("hello");
let s2_ref = &mut s2; // mutable reference
s2_ref.push_str(" world!");
Copy, Move, and Clone
// Simple values which implement the Copy trait are copied by value
let x = 5;
let y = x;
println!("{}", x); // x is still valid
// The string is moved to s2 and s1 is invalidated
let s1 = String::from("Hi, mom!");
let s2 = s1; // Shallow copy a.k.a move
println!("{}", s1); // Error: s1 is invalid
let s1 = String::from("Hi, mom!");
let s2 = s1.clone(); // Deep copy
// Valid because s1 isn't moved
println!("{}", s1);
Ownership and functions
fn main() {
let x = 5;
takes_copy(x); // x is copied by value
let s = String::from("Let’s Get Rusty!");
// s is moved into the function
takes_ownership(s);
// return value is moved into s1
let s1 = gives_ownership();
let s2 = String::from("LGR");
let s3 = takes_and_gives_back(s2);
}
fn takes_copy(some_integer: i32) {
println!("{}", some_integer);
}
fn takes_ownership(some_string: String) {
println!("{}", some_string);
} // some_string goes out of scope and drop is called. The backing memory is freed.
fn gives_ownership() -> String {
let some_string = String::from("LGR");
some_string
}
fn takes_and_gives_back(some_string: String) -> String {
some_string
}
Pattern Matching
let x = 5;
match x {
// matching literals
1 => println!("one"),
// matching multiple patterns
2 | 3 => println!("two or three"),
// matching ranges
4..=9 => println!("within range"),
// matching named variables
x => println!("{}", x),
// default case (ignores value)
_ => println!("default Case")
}
struct Point {
x: i32,
y: i32,
}
let p = Point { x: 0, y: 7 };
match p {
Point { x, y: 0 } => {
println!("{}" , x);
},
Point { x, y } => {
println!("{} {}" , x, y);
},
}
enum Shape {
Rectangle { width: i32, height: i32 },
Circle(i32),
}
let shape = Shape::Circle(10);
match shape {
Shape::Rectangle { x, y } => //...
Shape::Circle(radius) => //...
}
struct SemVer(i32, i32, i32);
let version = SemVer(1, 32, 2);
match version {
SemVer(major, _, _) => {
println!("{}", major);
}
}
let numbers = (2, 4, 8, 16, 32);
match numbers {
(first, .., last) => {
println!("{}, {}", first, last);
}
}
let num = Some(4);
match num {
Some(x) if x < 5 => println!("less than five: {}", x),
Some(x) => println!("{}", x),
None => (),
}
struct User {
id: i32
}
let user = User { id: 5 };
match user {
User {
id: id_variable @ 3..=7,
} => println!("id: {}", id_variable),
User { id: 10..=12 } => {
println!("within range");
},
User { id } => println!("id: {}", id),
}
Iterators
// Methods that consume iterators
let v1 = vec![1, 2, 3];
let v1_iter = v1.iter();
let total: i32 = v1_iter.sum();
// Methods that produce new iterators
let v1: Vec<i32> = vec![1, 2, 3];
let iter = v1.iter().map(|x| x + 1);
// Turning iterators into a collection
let v1: Vec<i32> = vec![1, 2, 3];
let v2: Vec<_> = v1.iter().map(|x| x + 1).collect();
struct Counter {
count: u32,
}
impl Counter {
fn new() -> Counter {
Counter { count: 0 }
}
}
impl Iterator for Counter {
type Item = u32;
fn next(&mut self) -> Option<Self::Item>
{
if self.count < 5 {
self.count += 1;
Some(self.count)
} else {
None
}
}
}
Error Handling
panic!("Critical error! Exiting!");
fn get_user_id(name: &str) -> Option<u32> {
if database.user_exists(name) {
return Some(database.get_id(name))
}
None
}
fn get_user(id: u32) -> Result<User, Error> {
if is_logged_in_as(id) {
return Ok(get_user_object(id))
}
Err(Error { msg: "not logged in" })
}
fn get_salary(db: Database, id: i32) -> Option<u32> {
Some(db.get_user(id)?.get_job()?.salary)
}
fn connect(db: Database) -> Result<Connection, Error> {
let conn = db.get_active_instance()?.connect()?;
Ok(conn)
}
Combinators
let some_string = Some("LGR".to_owned());
let some_len = some_string.map(|s| s.len());
struct Error { msg: String }
struct User { name: String }
let string_result: Result<String, Error> = Ok("Bogdan".to_owned());
let user_result: Result<User, Error> =
string_result.map(|name| {
User { name }
});
let vec = Some(vec![1, 2, 3]);
let first_element = vec.and_then(
|vec| vec.into_iter().next()
);
let string_result: Result<&'static str, _> = Ok("5");
let number_result =
string_result
.and_then(|s| s.parse::<u32>());
Multiple error types
type Result<T> = std::result::Result<T, CustomError>;
#[derive(Debug, Clone)]
struct CustomError;
impl fmt::Display for CustomError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "custom error message")
}
}
use std::error;
type Result<T> = std::result::Result<T, Box<dyn error::Error>>;
Iterating over errors
let strings = vec!["LGR", "22", "7"];
let numbers: Vec<_> = strings
.into_iter()
.filter_map(|s| s.parse::<i32>().ok())
.collect();
let strings = vec!["LGR", "22", "7"];
let numbers: Result<Vec<_>, _> = strings
.into_iter()
.map(|s| s.parse::<i32>())
.collect();
let strings = vec!["LGR", "22", "7"];
let (numbers, errors): (Vec<_>, Vec<_>) = strings
.into_iter()
.map(|s| s.parse::<i32>())
.partition(Result::is_ok);
let numbers: Vec<_> = numbers
.into_iter()
.map(Result::unwrap)
.collect();
let errors: Vec<_> = errors
.into_iter()
.map(Result::unwrap_err)
.collect();
Generics, Traits, and Lifetimes
struct Point<T, U> {
x: T,
y: U,
}
impl<T, U> Point<T, U> {
fn mixup<V, W>(self, other: Point<V, W>) -> Point<T, W> {
Point {
x: self.x,
y: other.y,
}
}
}
trait Animal {
fn new(name: &'static str) -> Self;
fn noise(&self) -> &'static str { "" }
}
struct Dog { name: &'static str }
impl Dog {
fn fetch() { // ... }
}
impl Animal for Dog {
fn new(name: &'static str) -> Dog {
Dog { name: name }
}
fn noise(&self) -> &'static str {
"woof!"
}
}
// A tuple struct that can be printed
#[derive(Debug)]
struct Inches(i32);
fn largest<T: PartialOrd + Copy>(list: &[T]) -> T {
let mut largest = list[0];
for &item in list {
if item > largest {
largest = item;
}
}
largest
}
fn make_adder_function(y: i32) -> impl Fn(i32) -> i32 {
let closure = move |x: i32| { x + y };
closure
}
pub struct Screen {
pub components: Vec<Box<dyn Draw>>,
}
use std::ops::Add;
#[derive(Debug, Copy, Clone, PartialEq)]
struct Point {
x: i32,
y: i32,
}
impl Add for Point {
type Output = Point;
fn add(self, other: Point) -> Point {
Point {
x: self.x + other.x,
y: self.y + other.y,
}
}
}
use std::fmt;
trait Log: fmt::Display {
fn log(&self) {
let output = self.to_string();
println!("Logging: {}", output);
}
}
fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() {
x
} else {
y
}
}
struct User<'a> {
full_name: &'a str,
}
let s: &'static str = "Hi, mom!";
Functions, Function Pointers & Closures
struct Point { x: i32, y: i32, }
impl Point {
// Associated function
fn new(x: i32, y: i32) -> Point {
Point { x: x, y: y }
}
// Method
fn getX(&self) -> i32 { self.x }
}
fn do_twice(f: fn(i32) -> i32, arg: i32) -> i32 {
f(arg) + f(arg)
}
let add_one = |num: u32| -> u32 {
num + 1
};
fn add_one() -> impl Fn(i32) -> i32 {
|x| x + 1
}
fn add_or_subtract(x: i32) -> Box<dyn Fn(i32) -> i32> {
if x > 10 {
Box::new(move |y| y + x)
} else {
Box::new(move |y| y - x)
}
}
- FnOnce - consumes the variables it captures from its enclosing scope.
- FnMut - mutably borrows values from its enclosing scope.
- Fn - immutably borrows values from its enclosing scope.
struct Cacher<T>
where
T: Fn(u32) -> u32,
{
calculation: T,
value: Option<u32>,
}
fn do_twice<T>(f: T, x: i32) -> i32
where T: Fn(i32) -> i32
{
f(x) + f(x)
}
Pointers
let mut num = 5;
let r1 = # // immutable reference
let r2 = &mut num; // mutable reference
let mut num = 5;
// immutable raw pointer
let r1 = &num as *const i32;
// mutable raw pointer
let r2 = &mut num as *mut i32;
Smart pointers
Box<T>
- for allocating values on the heap
let b = Box::new(5);
Rc<T>
- multiple ownership with reference counting
let a = Rc::new(5);
let b = Rc::clone(&a);
Ref<T>, RefMut<T>, and RefCell<T>
- enforce borrowing rules at runtime instead of compile time.
let num = 5;
let r1 = RefCell::new(5);
// Ref - immutable borrow
let r2 = r1.borrow();
// RefMut - mutable borrow
let r3 = r1.borrow_mut();
// RefMut - second mutable borrow
let r4 = r1.borrow_mut();
Multiple owners of mutable data
let x = Rc::new(RefCell::new(5));
Packages, Crates, and Modules
Definitions
- Packages - A Cargo feature that lets you build, test, and share crates.
- Crates - A tree of modules that produces a library or executable.
- Modules and use - Let you control the organization, scope, and privacy of paths.
- Paths - A way of naming an item, such as a struct, function, or module.
Creating a new package with a binary crate
$ cargo new my-project
Creating a new package with a library crate
$ cargo new my-project --lib
Defining and using modules
fn some_function() {}
mod outer_module { // private module
pub mod inner_module { // public module
pub fn inner_public_function() {
super::super::some_function();
}
fn inner_private_function() {}
}
}
fn main() {
// absolute path
crate::outer_module::
inner_module::inner_public_function();
// relative path path
outer_module::
inner_module::inner_public_function();
// bringing path into scope
use outer_module::inner_module;
inner_module::inner_public_function();
}
Renaming with as keyword
use std::fmt::Result;
use std::io::Result as IoResult;
Re-exporting with pub use
mod outer_module {
pub mod inner_module {
pub fn inner_public_function() {}
}
}
pub use crate::outer_module::inner_module;
Defining modules in separate files
// src/lib.rs
mod my_module;
pub fn some_function() {
my_module::my_function();
}
// src/my_module.rs
pub fn my_function() {}
The rust language cheatcode is an adoption form Let's Get Rusty cheatsheet, who has a great inspiration from the Rust community and inspired me to get into rust development. For learning purposes, I'm adding more content for my own learning in rust. Kindly check out his content from here to get the original cheatsheet: